Cálculo de Análisis de Varianza

Blanco y Asociados Análisis No Paramètrico de Tablas Cruzadas Aplicaciones Estadísticas Biblioteca I Biblioteca II Cálculo de Análisis de Varianza Cálculo de la T Contacto Correlación y Regresión Decisiones Estadísticas Determinantes sociales de la salud Enlaces y Prontuarios Estadisticas Descriptivas Estadisticas Inferenciales Estadisticas Interactivas Glosario Estadistico Gráficas Ley de Procedimiento Administrativo Libros Estadisticas y Metodologia Métodos de Investigación Números al Azar Organizaciones y Universidades Pro Etica Psicología y Salud Mental REPORT BY THE PRESIDENT’S TASK FORCE ON PUERTO RICO’S STATUS Revistas y Estadísticas de Administración Pública Salud Pública Salud Pública Africana Salud Pública Preventiva Servicios Profesionales Traducción Valores criticos de la F Valores criticos de la T El Tiempo Biblioteca 



 

 For Analysis of Variance (ANOVA) visit: http://faculty.vassar.edu/lowry/VassarStats.html

 

 http://danielsper.com/statcalc3/calc.aspx?id=43

 

 

 Special Thanks to Vassar Statistics !

One way Anova Analysis for up to five samples.
The design can be either for independent samples or correlated samples (repeated measures or randomized blocks). This page will also perform pair-wise comparisons of sample means via the Tukey HSD test.


Two Way Factorial ANOVA for Independent Samples, for up to four rows by four columns. This page will also calculate the critical values of Tukey's HSD for purposes of post-ANOVA comparisons.


Two-Factor ANOVA with Repeated Measures on One Factor,  for designs in which there are 2-4 randomized blocks of matched subjects, with 2-4 repeated measures for each subject.


Two-Factor Anova with Repeated Measures on Both Factors,  for designs in which there are 2-4 levels of each of two variables, A and B, with each subject measured under each of the AxB combinations.


2x2x2 ANOVA for Independent Samples,  For designs with three independent variables, A, B, and C, each with two levels. This situation yields 2x2x2=8 unique treatment combinations— a1b1c1, a1b1c2, and so forth— one for each of 8 independent samples of subjects.


Orthogonal Latin Square Designs for n = j2. Click here for a brief description of this type of design.
  
4x4    5x5